Unit II

Roll No. Exam Code : M-21

4. (a) Given:

θ °	tan θ
0	0
5	0.0875
10	0.1763
15	0.2679
20	0.3640
25	0.4663
30	0.5774

- Using Sterling formula, show that : $2 \tan 16^{\circ} = 0.2867$.
- (b) Apply Bessel's formula to obtain y_{25} , given $y_{20} = 2854$, $y_{24} = 3162$, $y_{28} = 3544$, $y_{32} = 3992$.
- 5. (a) Two cards are drawn without replacement from a well shuffled pack of 52 cards.Find the mean and variance of the number of aces.

Subject Code—52013

B. A. EXAMINATION

(Batch 2017) (Re-appear)

(Fifth Semester)

MATHEMATICS

BM-353

Numerical Analysis

Time: 3 Hours Maximum Marks: 20

Note: Attempt *Five* questions in all. Q. No. 1 is compulsory. All questions carry equal marks.

Compulsory Question

1. (a) Prove that :

$$\Delta\cos(cx+d) = 2\sin\frac{ch}{2} - \cos\left(cx+d + \frac{ch+n}{2}\right)$$

P.T.O.

(2-47-3-0321) J-52013

- (b) Find the third divided difference with arguments 2, 4, 9, 10 of the function $f(x) = x^3 3x$.
- (c) A die is thrown six times. Getting an odd number is a success. What is the probability of getting at least 5 successes?
- (d) Given that 2% of screws manufactured by a company are defective. Use Poisson distribution to find the probability that a packet of 100 screws contains one defective screw ($e^{-2} = 0.14$).
- (e) Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ by using Simpson's one-third rule. 5×.8=4

Unit I

- 2. (a) Find the missing term in the following table: 2
 - x : 0 1 2 3 4 5y : 1 2 4 8 - 3

(b) From the following table, find the number of students who obtained marks less than 45:

Marks	No. of Students
30-40	31
40-50	42
50-60	51
60-70	35
70-80	31

3. (a) From the following table, find f(3.5) using Lagrange's interpolation with a quadratic interpolation polynomial: 2

$$x$$
: 1 2 3 4 $f(x)$: 1 8 27 64

(b) Find the Hermite's polynomial of fifth degree which fits the following data: 2

$$x f(x) = \log x f'(x) = \frac{1}{x}$$
2.0 0.6932 0.5000
2.5 0.9163 0.4000
3.0 1.0986 0.3333

7. Reduce the matrix $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\ 3 & 2 & 3 \end{bmatrix}$, to tridiagonal form, using Given's method.

Unit IV

- 8. (a) Evaluate $\int_{0.5}^{0.7} x^{1/2} e^{-x} dx$ approximately by using suitable formula.
 - (b) Evaluate the integral $\int_{-1}^{1} \frac{dx}{1+x^2}$ using Gauss's quadrature formula for n=2 and n=3.
- 9. (a) Using simple Euler's method solve for y at x = 0.1 from $\frac{dy}{dx} = x + y + xy$, y(0) = 1, taking steps size h = 0.025. 2
 - (b) Given: $\frac{dy}{dx} = x^2(1+y) \text{ and } y(1) = 1, \ y(1.1) = 1.233, \ y(1.2) = 1.548, \ y(1.3) = 1.979.$ Evaluate y(1.4) by Adams-Bashforth method.

(b) If the variance of the Poisson distribution is 2, find the probabilities for X = 1, 2, 3, 4 and 5 from the recurrence relation of the distribution.

Unit III

6. (a) Find the first and second derivatives of the function tabulated below, at x = 1.0:

x	f(x)
1	1.000
1.05	1.0247
1.10	1.0488
1.15	1.0723
1.20	1.0954
1.25	1.1180
1.30	1.1401

(b) Use power method to find the largest eigen value of the matrix $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$, upto five steps only.

(2-47-5-0321) J-52013 5 P.T.O.