- (b) What is Hinsberg's reagent? How can it be used to differentiate primary, secondary and tertiary amines?
- (c) How can we prepare:
 - (i) p-bromoaniline from aniline
 - (ii) Ethylamine from phthalimide. 4
- (d) Complete the following reaction. Give the name of the reaction and its mechnism:
 4
 RNH₂ + CHCl₃ + KOH →
- 5. (a) Describe Hofmann elimination. What is the difference between Hofmann elimination and Saytzeff's rule. 3
 - (b) Complete the following reactions: 3

(i)
$$R-X + NH_3 \longrightarrow$$

(ii)
$$\bigcirc$$
 + Br₂(aq) \longrightarrow

- (iii) $ArN_2^+X^- + H_2O \longrightarrow$
- (c) What is Coupling reaction? Explain the mechanism and the experimental conditions in this reaction.

4

Roll No. **Exam Code : J-21**

Subject Code—52557

B. Sc. EXAMINATION

(Main/Re-appear) (Batch 2018 Onwards)

(Third Semester)

CHEMISTRY

CCL-305 (Course VI)

Organic Chemistry-III
(Functional Group Organic Chemistry-II)

Time: 3 Hours Maximum Marks: 80

Note: Attempt *Five* questions in all. Q. No. 1 is compulsory. All questions carry equal marks.

- 1. Compulsory question containing eight parts of equal marks:
 - (a) What is nucleophilic acyl substitution?
 - (b) Why acid amides are weakly basic in nature?

- (c) Out of aliphatic and aromatic diazonium salt, which one is more stable and why?
- (d) Explain why aniline is a weaker base than methylamine.
- (e) What are α -amino acids? Define essential and non-essential amino acids.
- (f) Discuss the amphoteric nature of amino acids.
- (g) Define epimers and anomers. Give example.
- (h) What is glycosidic linkage? $8\times2=16$

Unit I

- (a) Explain the alkaline hydrolysis of esters with mechanism. Give the evidence in favour of the mechanism.
 - (b) What are acid derivatives? Explain the order of stability of different acid derivatives towards nucleophilic acyl substitution.

2

- (c) Explain Perkin reaction with mechanism. Give the name of the product formed in this reaction.
- (d) Bring the conversion of acid chlorides into:
 - (i) Esters
 - (ii) Acetamide.
- 3. (a) Describe the HVZ reaction with mechanism.
 - (b) What is the role of acid catalyst in nucleophilic acyl substituion? 2
 - (c) Why acetyle chloride is more reactive than acid anhydrides?
 - (d) Discuss Reformatsky reaction with mechanism.
 - (e) Complete the following reactions: 4
 - (i) $CH_3(CH_2)_3COOH + SOCl_2 \longrightarrow$
 - ii) Benzoyl Chloride + 1-Butanol ----

Unit II

4. (a) How would you prepare aniline from benzamide? Give the mechanism of the reaction.

3

(d) What is diazotisation? Explain with mechanism.
(e) How can benzene be prepared from diazonium salt?

Unit III

- **6.** (a) Explain the enzymatic method for the c-terminal residue analysis of peptides. **3**
 - (b) Explain solid phase peptide synthesis in detail.4
 - (c) Write the formula of alanine. How can it be synthesised from Gabriel phthalimide reaction?
 - (d) Write noted on the following: 5
 - (i) Secondary structure of proteins
 - (ii) Electrophoresis.
- 7. (a) Explain the synthesis of a dipeptide with explanation of N-protection and C-activation.

(b)	Explain the ninhydrin test and formation	
	of metal chelates by amino acids. 4	
(c)	Describe the following: 4	
	(i) Strecker's synthesis	
	(ii) Isoelectric point.	
(d)	Describe the Edmann method for N-	
	terminal residue analysis of amino acids.	
	4	
	Unit IV	
Unit IV		
8. (a)	Explain the following reactions:	
	(i) Kiliani-Fischer Synthesis	
	(ii) Wohl degradation. 4	
(b)	Explain the process of mutarotation with	
	its mechanism. 4	
(c)	What are Oligosaccharides? Discuss the	
	structure of maltose and sucrose. 4	
(d)	Give general properties of	
	monosaccharides and disaccharides. 2	
(e)	What are absolute and relative	
	configuration? 2	
J-52557	6	

9.	(a)	Draw the open chain structure of Glucose.
		What are the limitations of open chain
		structure ?
	(b)	Give the cyclic structure and Haworth
		projection formulae for:
		(i) α-D-Glucopyranose
		(ii) β-D-fructofuranose.
	(c)	What are carbohydrates? How are they
		classified ?
	(d)	Explain the following: 3
		(i) Ruff degradation
		(ii) Configuration of monosaccharides.
	(e)	Differentiate between starch and cellulose.
	, ,	2