Section IV

- 8. (a) If $A + iB = \cos(x + iy)$, then prove that $(1+A)^2 + B^2 = (\cosh y + \cos x)^2.$ 2.5
 - (b) Prove that : $(i^i)^i = \cos(4n+1)\frac{\pi}{2} i\sin(4n+1)\frac{\pi}{2}.$ 2.5
- 9. (a) Find the sum of series: $\sin \alpha + \sin 2\alpha + \sin 3\alpha + \dots$ to *n* terms and deduce the sum of the series $1 + 2 + 3 + \dots$ $n = \frac{n(n+1)}{2}$.
 - (b) Find α if:

$$\sin^{-1}\frac{1}{\sqrt{5}} + \cos^{-1}\alpha = \frac{\pi}{4}.$$
 2.5

Roll No. **Exam Code : M-21**

Subject Code—52899

B. A. EXAMINATION

(Batch 2018) (Main)

(Fifth Semester)

MATHEMATICS

BAMH-303 (i)

Number Theory and Trigonometry

Time: 3 Hours Maximum Marks: 24

Note: Attempt *Five* questions in all. Q. No. 1 is compulsory which is of 4 marks. remaining all questions carry equal marks.

(Compulsory Question)

- 1. (a) Find a such that $a \equiv 8 \pmod{3}$. 0.5
 - (b) Evaluate $\phi(10000)$. **0.5**
 - (c) State Fermat' theorem. 0.5

(5-44-14-0321) J-52899 P.T.O.

J-52899 4 630

(d) State Wilson's theorem.
(e) Find the principal and general value of Log (-5).
(f) Resolve log(1-cos 2θ + i sin 2θ).
(g) Show that 16! + 1 is divisible by 17 for any integer n.
(h) Prove that tan(ix) = i tanh x.
0.5

Section I

2. (a) Find all solutions in integers of the linear Diophantine equation 40x + 63y = 521.

2.5

(b) Solve the congruence $6x \equiv 3 \pmod{75}$.

3. (a) Find the remainder 3¹⁸¹ is divided by 17. **2.5**

(b) Find the least positive integer x such that:

2

$$x \equiv 1 \pmod{3} x \equiv 2 \pmod{4} x \equiv 3 \pmod{5}.$$

2.5

J-52899

Section II

- 4. (a) Find the number of positive integers ≤ 10000 that are co-prime to 10000. 2.5
 - (b) Write a complete residue system modulo 11 composed entirely of multiples of 2. 2.5
- 5. (a) Find the number and sum of positive divisors of 3000. 2.5
 - (b) Define Mobius function and calculate its value for 5000. 2.5

Section III

- 6. (a) Determine whether $x^2 \equiv 2 \pmod{61}$ is solvable or not.
 - (b) Find the quadratic residue and quadratic non-residue of 13.
- 7. (a) State and prove Quadratic Reciprocity law. 2.5
 - (b) Evaluate $\left(\frac{7}{13}\right)$ using Gauss Lemma. 2.5

(5-44-15-0321) J-52899

3

P.T.O.