IMPORTANT INSTRUCTIONS FOR PAPER ID 53841

1. The maximum marks of this paper is 16 instead of 20

- (b) Find the locus of the point of intersection of perpendicular generators of the hyperbolic paraboloid. 2½
- 5. (a) Show that the two confocal paraboloids cut everywhere at right angles. 2½
 - (b) Show that the surface represented by the equation :

$$2x^{2} + 5y^{2} + 2z^{2} - 2yz + 4zx$$
$$- 2xy + 14x - 16y + 14z + 26$$

is an elliptic cylinder. 2½

Roll No. **Exam Code : J-21**

Subject Code—53841

B. A. EXAMINATION

(Batch 2018 Onwards)

(Main)

(Sixth Semester)

MATHEMATICS

BAMH-307

Solid Geometry

Time: 3 Hours Maximum Marks: 20

Note: Attempt *Three* questions in all. Q. No. 1 is compulsory.

(Compulsory Question)

1. (a) Show that the plane x + 2y + 3z = 2 touches the conicoid $x^2 - 2y^2 + 3z^2 = 2$ and find the point of contact.

- (b) If the polar plane of a point P w.r.t the conicoid $ax^2 + by^2 + cz^2 = 1$ passes through a point Q, then the polar plane of Q passes through P. 1
- (c) Determine the circular section of the paraboloid $ax^2 + by^2 = 2cz$.
- (d) Prove that if three points of any straight $\lim \frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n} \quad \text{lie on the conicoid, then the line wholly lies on the conicoid.}$
- (e) Prove that the tetrahedron PQRS is self-polar with respect to the given conicoid.
- (f) Define diametral plane and the principal plane.

Unit I

2. (a) Find the equations of the two tangent planes which contain the lines given by 7x + 10y = 30, 5y - 3z = 0 and touch the ellipsoid $7x^2 + 5y^2 + 3z^2 = 60$. 2½

- (b) Find the locus of the point of intersection of three mutually perpendicular tangent planes to the central conicoid $ax^2 + by^2 + cz^2 = 1$. 2½
- 3. (a) Prove that the enveloping cylinder of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, whose generators are parallel to the lines $\frac{x}{0} = \frac{y}{\pm \sqrt{a^2 b^2}} = \frac{z}{c} \text{ meet the plane } z = 0$ in circles.
 - (b) Find the equation of the polar plane of a point (x_1, y_1, z_1) w.r.t. the conicoid $ax^2 + by^2 + cz^2 = 1$.

Unit II

4. (a) Find the lengths of semi-axis of the sections of the paraboloid $2x^2 + y^2 - z = 0$ by the plane x + 2y + z = 4.